Math 4300 - Homework \# 9 Interiors and the Crossbar Theorem

1. Let $(\mathscr{P}, \mathscr{L}, d)$ be a Pasch geometry. Let $\ell \in \mathscr{L}$ be a line.
(a) Let $S \subseteq \mathscr{P}$ be a line, ray, line segment, the interior of a ray, or the interior of a line segment. If $S \cap \ell=\emptyset$, then all the points of S lie on the same side of ℓ.
(b) Let $A, B, C \in \mathscr{P}$ with $A-B-C$ and $\overleftrightarrow{A C} \cap \ell=\{B\}$. Then $\operatorname{int}(\overrightarrow{B A})$ and $\operatorname{int}(\overrightarrow{B A})$ both lie on the same side of ℓ, while $\operatorname{int}(\overrightarrow{B A})$ and $\operatorname{int}(\overrightarrow{B C})$ lie on opposite sides of ℓ.

2. (This problem is used in Topic 11)

Let $(\mathscr{P}, \mathscr{L}, d)$ be a Pasch geometry. Suppose that $\angle A V B$ is an angle and B and P are on the same side of $\overleftrightarrow{V A}$. Prove that $P \in \operatorname{int}(\angle A V B)$ if and only if A and B are on opposite sides of $\overleftrightarrow{V P}$
3. Let $(\mathscr{P}, \mathscr{L}, d)$ be a Pasch geometry. Let $A, B, C, P \in \mathscr{P}$ where A, B, C are noncollinear. Prove: $P \in \operatorname{int}(\angle A B C)$ if and only if A and P are on the same side of $\overleftrightarrow{B C}$, and C and P are on the same side of $\overleftrightarrow{B A}$.
4. Let $(\mathscr{P}, \mathscr{L}, d)$ be a Pasch geometry. Let $A, B, C, P \in \mathscr{P}$ where A, B, C are noncollinear. Prove that if $A-P-C$, then $P \in \operatorname{int}(\angle A B C)$ and $\operatorname{int}(\overline{A C}) \subseteq \operatorname{int}(\angle A B C)$.
5. Let $(\mathscr{P}, \mathscr{L}, d)$ be a Pasch geometry. Given an angle $\angle A V B$, show that if $\overrightarrow{V P} \cap \operatorname{int}(\overline{A B}) \neq \emptyset$, then $P \in \operatorname{int}(\angle A V B)$.
6. Let $(\mathscr{P}, \mathscr{L}, d)$ be a Pasch geometry. Let $A, B, C, D, P \in \mathscr{P}$ where A, B, C are noncollinear. If $A-B-D$, then $P \in \operatorname{int}(\angle A B C)$ if and only if $C \in \operatorname{int}(\angle D B P)$.
7. Let $(\mathscr{P}, \mathscr{L}, d)$ be a Pasch geometry. Let A, B, C be noncollinear points from \mathscr{P}. Prove that $\operatorname{int}(\triangle A B C)$ is convex.

