Math 4300 - Homework #9
 Interiors and the Crossbar Theorem

- 1. Let $(\mathscr{P}, \mathscr{L}, d)$ be a Pasch geometry. Let $\ell \in \mathscr{L}$ be a line.
 - (a) Let $S \subseteq \mathscr{P}$ be a line, ray, line segment, the interior of a ray, or the interior of a line segment. If $S \cap \ell = \emptyset$, then all the points of S lie on the same side of ℓ .
 - (b) Let $A, B, C \in \mathscr{P}$ with A B C and $\overrightarrow{AC} \cap \ell = \{B\}$. Then $\operatorname{int}(\overrightarrow{BA})$ and $\operatorname{int}(\overrightarrow{BA})$ both lie on the same side of ℓ , while $\operatorname{int}(\overrightarrow{BA})$ and $\operatorname{int}(\overrightarrow{BC})$ lie on opposite sides of ℓ .
- 2. (This problem is used in Topic 11)

Let $(\mathscr{P}, \mathscr{L}, d)$ be a Pasch geometry. Suppose that $\angle AVB$ is an angle and B and P are on the same side of \overrightarrow{VA} . Prove that $P \in \operatorname{int}(\angle AVB)$ if and only if A and B are on opposite sides of \overrightarrow{VP}

- 3. Let $(\mathscr{P}, \mathscr{L}, d)$ be a Pasch geometry. Let $A, B, C, P \in \mathscr{P}$ where A, B, C are noncollinear. Prove: $P \in int(\angle ABC)$ if and only if A and P are on the same side of \overrightarrow{BC} , and C and P are on the same side of \overrightarrow{BA} .
- 4. Let $(\mathscr{P}, \mathscr{L}, d)$ be a Pasch geometry. Let $A, B, C, P \in \mathscr{P}$ where A, B, C are noncollinear. Prove that if A P C, then $P \in int(\angle ABC)$ and $int(\overline{AC}) \subseteq int(\angle ABC)$.
- 5. Let $(\mathscr{P}, \mathscr{L}, d)$ be a Pasch geometry. Given an angle $\angle AVB$, show that if $\overrightarrow{VP} \cap \operatorname{int}(\overrightarrow{AB}) \neq \emptyset$, then $P \in \operatorname{int}(\angle AVB)$.
- 6. Let $(\mathscr{P}, \mathscr{L}, d)$ be a Pasch geometry. Let $A, B, C, D, P \in \mathscr{P}$ where A, B, C are noncollinear. If A B D, then $P \in int(\angle ABC)$ if and only if $C \in int(\angle DBP)$.

7. Let $(\mathscr{P}, \mathscr{L}, d)$ be a Pasch geometry. Let A, B, C be noncollinear points from \mathscr{P} . Prove that $int(\triangle ABC)$ is convex.